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Abstract

Over one billion people in the world are anemic and at risk for major liabilities. Previous models
proposed to differentiate between disorders of anemia on the basis of red blood cell measurements
have been limited by the need to use printed output from automated blood sample analyses. We
developed electronic methods to capture multivariate red cell data measured by flow cytometric
blood cell counting instruments and devised a general bilevel framework for classification that
includes (1) fitting mixture densities to the multivariate grouped and truncated distribution for each
individual, and (2) discrimination between patient subgroups on the basis of distribution parameter
estimates. Data were collected from 90 healthy individuals and 146 patients with anemia. For each
subject the joint distribution of red blood cell volume and hemoglobin concentration was modeled as
a mixture of two multivariate lognormal distributions. The Expectation-Maximization algorithm
was used to fit parameters to grouped and truncated data. Classification into controls and two
patient subgroups by fitting normal density models, with leave-one-out cross validation, achieved
98% and 100% correct classification for controls and patients, respectively.



1 Introduction

According to population estimates, over one billion people in the world have anemia, defined as
a reduction in the circulating red cell mass that may diminish the oxygen-carrying capacity of
the blood. Iron deficiency anemia, attributed to an imbalance between dietary iron supply and
physiological requirements for growth and reproduction, is the most common nutritional anemia
(DeMaeyer and Adiels-Tegman, 1985.) Major liabilities including mental and motor developmental
defects in infants (Oski, 1993) and weakness, weight loss, and impaired work performance in adults
(Basta et al., 1979; Edgerton et al., 1979). Other nutritional anemias include vitamin Bjs defi-
ciency and folate deficiency. The anemia of chronic disorders found in infectious diseases such as
tuberculosis, typhoid, and smallpox and in noninfectious disorders including rheumatoid arthritis,
Hodgkin disease, metastatic carcinoma, is usually moderate and rarely symptomatic, while tha-
lassemia, a form of severe anemia caused by mutations (or deletions) in or around the globin chain
DNA and accompanied by a disturbance of hemoglobin synthesis, may lead to organ damage and
premature death. Chronic alcohol ingestion is often associated by anemia as a result of poor nutri-
tion, gastrointestinal bleeding, or the toxic efffect of alcolohol on the production of erythrocytes.
Alcoholics may also develop coincident iron deficiency and folate deficiency (Williams, et al., 1990).

Hematologic examination of the blood is a routine procedure to determine the presence of
anemia in patients with major illnesses. Typical morphologic classification of anemias is made on
the basis of the mean cell volume (Williams, et al., 1990). For example, iron deficiency anemia,
«a- and (-thallasemias, and in some cases, anemia of chronic disease, may be characterized by
microcytosis in which the mean cell volume is below the normal range, while vitamin B deficiency,
folate deficiency, and alcoholic liver disease are often accompanied by macrocytosis with a mean
cell volume above the normal range. However, this classification does not take into account the
variations in hemoglobin concentration that are also important in the clinical diagnosis of anemia.

Flow cytometric blood cell counting instruments make measurements on each red cell using a
laser light scattering system. This technology provides the red cell volume distribution, hemoglobin
concentration distribution, and the joint red cell volume and hemoglobin concentration distribution.
Previous investigators have demonstrated that new flow cytometric technology accurately measures
both volume and hemoglobin concentrations over a wide range of mean cell volume (30 to 120 fl)
and mean cell hemoglobin concentration (27 to 45 g/dL) values. Mohandas and colleagues (1986)
documented that volume and hemoglobin concentration distributions can vary independently of
each other in pathologic red cell samples.

Measurement of volume and hemoglobin concentration in individual resealed erythrocytes re-
vealed populations of microcytic and macrocytic cells. Additionally subpopulations of cells were
found with either decreased hemoglobin concentration (hypochromic cells) or increased hemoglobin
concentration (hyperchromic cells) (Green et al., 1987). While illustrating the potential of the new
information inherent in laser light scattering technology, previous studies have been limited by the
necessity to use the printed statistical and graphical output provided with blood sample analyses.
No generally accepted techniques are currently available for the analysis and interpretation of the
underlying joint distributions of cell volume and hemoglobin concentration. Since different causes
of anemia may result in characteristic alterations in these distributions, we hypothesized that clas-
sification based on modeling of the multivariate distribution of red cell volume and hemoglobin



concentration would be useful for diagnostic evaluation of anemia. Our study is the first to model
and classify these multivariate distributions.

To provide standardized methodological uniformity for cell size studies, the International Com-
mission for Standardization in Hematology (ICSH) first outlined general principles for analyzing
cell size curves (ICHS, 1982). Methods were then developed for fitting a single reference lognormal
distribution and assessing its goodness of fit. (ICSH, 1990). Analysis of red blood cell volume data
demonstrated the reproducibility of the ICSH reference method and the ability to detect sequen-
tial changes in distributions (McLaren, et al., 1993). Methods have been developed for detection
of two-component mixtures of lognormal distributions and utilized to characterize and quantify
subpopulations of red blood cells in developing iron deficiency anemia and subsequent treatment
for the disease (McLaren, 1996; McLaren et al., 2000). While these methods have been applied
to analysis of univariate red blood cell volume distributions, no suitable statistical methods are
currently available for analysis of multivariate distributions arising from multiple measurements
made on a single blood cell, such as the volume and hemoglobin concentration of a red blood cell.

We now describe a general framework that includes the following: (1) development of techniques
to model multivariate mixtures of distributions from grouped and truncated data, (2) description
of the bivariate distribution of red cell volume and hemoglobin concentration in patients with ane-
mia and controls, and (3) classification of patient subgroups on the basis of distribution parameter
estimates. Analysis of data from 90 healthy individuals and 146 patients with documented dis-
orders of anemia showed that mixture modeling on parameter estimates with leave-one-out cross
validation, achieved 98% and 100% correct classification for controls and patients, respectively. We
conclude that these methods provide a means for automated screening for disorders of anemia and
monitoring the response to therapy.

2 Methods

2.1 Patients and Reference Group

This study was performed at the Western Infirmary, Glasgow, Scotland after Institutional Review
Board approval was obtained. We collected blood samples from a reference group of healthy indi-
viduals and patients with documented disorders of anemia. Diagnoses and body iron status were
confirmed by examination of blood films, iron studies, and red cell indices. Reference ranges for
red cell indices were as follows: hemoglobin (HGB) 13.5-17.5 g/dL (males), 12-16 g/dL (females);
mean cell hemoglobin concentration (MCHC) 33.4-35.3 g/dL; and mean cell volume (MCV) 80-
100 fl. We analyzed data from 90 healthy individuals and 146 patients. Patients were divided
into two subgroups, those with microcytosis including iron deficiency anemia (n=82), thalassemia
(n==8) and anemia of chronic disease (n=16), and those with macrocytosis including vitamin either
By /folate deficiency (n=12), and alcoholic liver disease (n=28). For blood cell analysis, we used a
flow cytometric blood cell counting instrument Technicon H*1 (Bayer Diagnostics, Tarrytown, New
York, USA), with a laser light scattering system that estimates both the volume and hemoglobin
concentration of each red cell and provides the red cell volume distribution, hemoglobin concentra-
tion distribution, and joint red cell volume and hemoglobin concentration distributions. For this



system a photoelectric cell detects light which is refracted, diffracted, or scattered by cells passing
through a small illuminated area in the optical system. The detector generates electrical pulses of
magnitude proportional to the size of the particle. Individual red blood cell volume and hemoglobin
concentration are determined by simultaneous measurement of light scatter at two different angles.
This methodology permits identification of red blood cell populations with different hemoglobin
concentrations (Ross and Bentley, 1986; Bollinger et al., 1987). Complete blood count (CBC) val-
ues and frequency counts representing the number of cells within two-dimensional regions of red cell
volume and hemoglobin concentration were captured electronically and stored for further analysis.
All analyses described in this paper were performed on the raw data before instrument processing.
For each sample, measured in duplicate, the data obtained consisted of a cytogram, i.e. bivariate
histogram, with a range of 0 to 200 fl for cell volume and 0 to 50 g/dl for hemoglobin concentration.

2.2 Mixture Modeling

We developed techniques to model the joint distribution of red cell volume and hemoglobin con-
centration as a mixture of two multivariate lognormal distributions. A mathematical model of red
cell production predicted a lognormal form for the distribution of red blood cell volume (McLaren
al., 1986) and red cell hemoglobin concentration distributions exhibit a right-skew (Noe and Bell,
1985). Finite mixture models have been fit to univariate grouped and truncated data by maxi-
mum likelihood via the Expectation-Maximization (EM) algorithm (McLachlan and Jones,1988;
McLaren et al., 1991). McLachlan and Krishnan (1997) review the principles and methodology of
the EM algorithm and discuss aspects of its implementation in many contexts. A comprehensive
account of the theory and applications of modeling via finite mixture distributions is provided
by McLachlan and Peel (2000). For our studies the Expectation-Maximization (EM) algorithm
was extended to evaluate multidimensional integrals over two-dimensional regions and numerical
integration techniques were employed to improve computational efficiency [See (Cadez et al., 2002)].

For analysis of data from healthy individuals and patients, we developed a new bilevel modeling
technique. We first identified mixtures of two subpopulations of cells within a single blood sample by
fitting a two-component lognormal mixture model to each individual distribution. The parameter
estimates from each fitted distribution were recorded. These included the mixing weight for the
larger proportion, volume and hemoglobin concentration means and variances for each component,
and the estimated correlation between volume and hemoglobin concentration for each component.
Second, for discrimination between patient subgroups, a supervised classifier for the parameter sets
of all subjects from the same disease subgroup (control, microcytic anemia, macrocytic anemia)
was used to fit a normal density model to each group.

2.3 Classification

Classification was performed using Bayes rule for the posterior class distribution:

p(xlei)p(ci) ()
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where p(z|c;) is a probability density function under the i-th single normal subpopulation, p(¢;) is
the prior for the disease, estimated by the ratio of patients in the i-th group to the total number of
patients, and p(z) is a normalizing constant. Both p(z|c;) and p(¢;) are estimated from the data as
described in Section 2.4. To estimate the overall accuracy of discrimination of patient subgroups,
we used leave-one-out cross validation. For this type of cross validation we removed a data point
from the data set and trained the three single normal density models. The excluded data point was
then evaluated using Bayes rule and assigned to a class. This process was repeated for each of the
data points in the data set. The overall percent of correctly classified distributions was calculated.

2.4 Bilevel Model

The bilevel model used in this paper consists of two “levels.” The lower (individual) level model
consists of a two-component lognormal mixture fitted to each of the individual cytograms. Max-
imum likelihood estimates of the lognormal mixture parameters are obtained for each individual
cytogram using the EM procedure as outlined below. Variability among parameters of different
individuals is then modeled at the higher (group) level of the hierarchy by a multivariate normal
density function for each of the groups.

2.4.1 Modeling at the Individual Level: EM for Fitting Mixtures to Cytograms

The binned, and in some cases, truncated nature of the cytogram data for each individual requires
that the standard EM estimation framework for finite mixtures be somewhat modified. The the-
ory for fitting finite mixture models to such data in the univariate case was developed in full by
McLachlan and Jones (1988). Here we present a brief summary of the underlying ideas. The model
can be written as:

g
fla;®) = mifi(x;0), (2.1)
i=1

where the m;’s are weights for the individual components, the f;’s are the component density
functions of the mixture model parametrized by 6, and & is the set of all mixture model parameters,
® = {m,0}. The overall sample space H is divided into v disjoint subspaces H;, (bins) of which
only the counts on the first r bins are observed, while the counts on the last v — r bins are missing.
The (observed) likelihood associated with this model (up to irrelevant constant terms) is given by
Jones and McLachlan (1990).

,
lnL:an InP; —nln P, (2.2)
j=1

where n; is the count in bin j, n is the total observed count n = Z§:1 n;, and the Ps represent
integrals of the probability density function (PDF) over bins:

P=r@) = [ fae, (2:3)
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7j=1
The form of the likelihood function above corresponds to a multinomial distributional assumption
on bin occupancy.

In Cadez et al. (1999, 2002), we provide a detailed description of how the EM algorithm can
be implemented efficiently in the multidimensional case for binned and truncated data and we
also demonstrate the application of the method to mixture modeling of cytograms. Numerical
efficiency is achieved by leveraging a variety of computational short-cuts at various stages of the
EM algorithm. For example, for any fixed sample size, a multivariate histogram will be much
sparser than any marginal univariate counterpart, in terms of counts per bin (i.e., marginals). This
sparseness can in turn be taken advantage of for the purposes of efficient numerical integration.

2.4.2 Group Level Modeling in Parameter Space

The output of the EM mixture modeling is a set of 11 parameters for each individual that describes
a two-component mixture distribution for the red blood cells of that individual. The parameters
of this mixture model consist of a mixing weight «, a two-dimensional mean vector u, and three
covariance parameters for each of the two components. For each individual, the two mean vectors
w1 and po represent the mean cell volume and mean cell hemoglobin concentration of each of the
mixture components. The two covariance matrices Y7 and X5 describe the variability in param-
eter space of the cell volume and the cell hemoglobin concentration for each of the two mixture
components.

For the purposes of the higher-level model we use only the weight parameters and the mean
parameters in the model, i.e., a, 1 and pa, for a total of five dimensions. The covariance parameters
Y1 and Y9 did not appear to contain much discriminatory power between the groups and, thus,
were omitted from the modeling at this level. Defining apnax = max{a,1 — a} as the larger of the
mixing weights, we transform ap,x to a log-odds scale, i.e., log l—f'c%fa—x We then model the class-
conditional distribution of the 5-dimensional parameter vector (consisting of the log-odds plus two
sets of 2-dimensional means) for each group as being a multivariate Normal density, resulting in a
3-component or 6-component Normal mixture depending on the number of groups defined. Since
the group labels are known a priori, maximum likelihood parameter estimation for each group is
performed in closed form.

The mixing proportions p(c;), are also estimated by maximum likelihood and represent the prior
probabilities of belonging to each group. The maximum likelihood estimates are the proportion
of patients in the i-th group. The estimated 5-dimensional mean for a particular group represents
the typical log-odds and mean parameters that will be fit to cytograms from that group. The
5 x 5 estimated covariance matrix for each group represents the variability in the mixing weight
and mean vector parameters estimated from the cytogram, for that group. Since a full covariance
matrix for five dimensions requires the estimation of 15 parameters per group, we assumed a
diagonal covariance model for groups that had less than 50 individuals and used a full covariance



matrix for groups with 50 or more individuals. Posterior probabilities of group membership can
then be calculated via Bayes rule using the estimated models for each group and the group with
the maximum probability is then chosen.

2.4.3 Experimental Methodology

In the experiments in this paper, leave-one-out cross-validation was used to generate the classifi-
cation results, where each of the 236 individuals were removed from the data set one at a time,
the classification models were estimated as described above using the other 235 individuals, and
a prediction was made on the individual not used in the estimation process. The results reported
in this paper were obtained using MATLAB 6.0 Release 12.1 (The MathWorks, Inc., Natick, MA,
USA), and a set of custom Matlab scripts we developed specifically for this task.

3 Results

3.1 Distribution Modeling and Classification

Tables 1 and 2 give descriptive statistics (mean and standard deviation) for complete blood count
values measured in the 163 females (Table 1) and 73 males (Table 2) in the reference group.

Table 1: Complete Blood Count Values in 58 Healthy Females and 105 Female Patients with
Anemia

CBC Controls IDA ACD THT ALD BFD
Value (n=58) (n=68) (n=11) (n=3) (n=15) (n=8)
HGB g/dL.  13.2 (0.90) 9.0 (2.28) 10.7(1.06) 11.5(0.76) 12.0 (1.67) 9.0 (2.8)
HCT % 0.40 (0.09) 0.30 (0.06) 0.34 (0.04) 0.38 (0.06) 0.4 (0.05) 0.3 (0.09)
MCV fl 02.8 (3.70) 75.5 (6.59) 77.9 (5.92) 68.4 (3.07) 117.9 (8.90) 122.9 (10.5)
MCHC g/dL  33.4 (1.01) 29.4 (2.39) 31.2 (1.56) 20.9 (2.43) 32.6 (1.59)  33.1(2.40)
RDW % 12.8 (0.43) 16.4 (1.73) 16.0 (1.77) 15.8 (0.12) 15.9 (2.00)  18.9 (3.20)
HDW g/dL 2.3 (0.20) 3.0 (0.42) 2.7 (0.31) 3.1 (0.11)  2.2(0.33) 2.8 (0.75)




Table 2: Complete Blood Count Values in 32 Healthy Males (Controls) and 41 Male Patients with
Anemia

CBC Controls IDA ACD THT ALD BFD
Value (n=32) (n=14) (n=5) (n=5) (n=13) (n=4)

HGB g/dL 150 (0.89) 9.1 (2.23) 11.9 (0.58) 11.6 (0.97) 12.0 (3.19)  10.0 (1.96)

HCT % 0.5 (0.03) 0.3 (0.06) 0.4 (0.02) 0.4 (0.02) 0.4 (0.09) 0.3 (0.07)

MCV fl 91.5 (3.53) 74.6 (6.83) 79.9 (2.12) 69.3 (4.31) 117.0 (7.51) 122.7 (19.8)
MCHC g/dL  33.7 (1.13) 29.1 (2.10) 31.2 (0.88) 21.7 (1.11) 32.9 (2.02) 32.2 (1.17)
RDW % 12.8 (0.35) 16.7 (2.55) 15.3 (2.59) 15.9 (0.84) 16.2 (1.80)  17.1 (2.96)

HDW g/dL 2.4 (0.16) 3.2 (0.35) 2.9 (0.34) 3.0 (0.32)  2.2(0.27) 2.7 (0.44)

Table 3: Classification of Healthy Individuals (Controls) and Three Patient Subgroups

Number of Cases Classified into Group
Subgroup  Percent Correct Control Microcytosis Macrocytosis Total

Control 97.8% 88 2 0 90
Microcytosis 100.0% 0 106 0 106
Macrocytosis 100.0% 0 0 40 40

Figures 1 and 2 show histograms from two representative subjects. Each distribution represents
about 40 000 red blood cells measured on a single blood sample. Figure 1 shows the distribution
from a healthy male with estimated geometric mean cell volume and hemoglobin concentration
of 89 fl and 34.4 g/dL respectively. For comparison, the distribution shown in Figure 2 is from a
female with developing iron deficiency anemia. The bivariate distribution contained a hypochromic,
microcytic subpopulation of 58% of cells with an estimated geometric mean red cell volume of 73.9
fl and geometric mean hemoglobin concentration of 28.4 g/dL, both below normal. A hypochromic,
normocytic subpopulation (with an estimated 42% of the total cells) had geometric mean red cell
volume of 80.9 fl, within the normal range, and geometric mean hemoglobin concentration of 30.2
g/dL.

The distribution and contour plot from a female with alcoholic liver disease with hypochromic,
macrocytic anemia are shown in Figures 3 and 4. The larger subpopulation contains 95% of the
cells with an estimated geometric mean cell volume of 140 fl and moderately reduced geometric
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Figure 1: Red blood cell volume and hemoglobin concentration distribution in a healthy male.

Parameter estimates: mixing proportion = 1.0, geometric mean cell volume = 89 fl, geometric
mean cell hemoglobin concentration = 34.4 g/dL.
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Figure 2: Red blood cell volume and hemoglobin concentration distribution in developing iron
deficiency anemia. Parameter estimates: mixing proportion = .58, geometric mean red cell volume
= 73.9 fl, geometric mean cell hemoglobin concentration = 28.4 g/dL; mixing proportion = .42,

geometric mean red cell volume = 80.9 fl, geometric mean cell hemoglobin concentration = 30.2
g/dL
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Figure 3: Bivariate distribution for red blood cell volume and hemoglobin concentration in alcoholic
liver disease (ALD). Parameter estimates: mixing proportion = .95, geometric mean red cell volume
= 140 fl, geometric mean cell hemoglobin concentration = 33.0 g/dL; mixing proportion = .05,
geometric mean red cell volume = 95.9 fl, geometric mean cell hemoglobin concentration = 32.0
g/dL
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Figure 4: Contour plot for cell volume and hemoglobin concentration in ALD.
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Figure 5: Bivariate distribution for red blood cell volume and hemoglobin concentration in B
deficiency and folate deficiency (BFD). Parameter estimates: mixing proportion = .48, geometric
mean red cell volume = 120.7 fl, geometric mean cell hemoglobin concentration = 32.4 g/dL;
mixing proportion = .52, geometric mean red cell volume = 94.0 fl, geometric mean cell hemoglobin
concentration = 26.0 g/dL
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Figure 6: Contour plot for cell volume and hemoglobin concentration in BFD.
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Figure 7: Scatter plot of mean volume and log-odds of the mixture weight « for the largest mixture
component.
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Table 4: Classification of Controls and 6 Disease Categories. Variability among paramaters of
different individuals was modeled by a multivariate density function.

Number of Cases Classified into Group

Subgroup Percent Control IDA THAL ACD ALD BFD Total
Correct
Control 97.8% 88 2 0 0 0 0 90
Iron Deficiency Anemia 93.9% 0 7 1 3 0 1 82
Thalassemia 62.5% 0 3 5 0 0 0 8
Anemia of Chronic Disease 0.0% 0 15 1 0 0 0 16
Alcoholic Liver Disease 82.1% 0 0 0 0 23 5 28
B12 Folate Deficiency 58.3% 0 0 0 1 7 4 12

mean hemoglobin concentration of 33.0 g/dL. A remaining 5% of the cells had geometric mean
volume (95.9 fl) and hemoglobin concentration (32.0 g/dL) consistent with that of controls. The
bivariate distribution (Figure 5) and contour plot (Figure 6) from a female patient with Bja/folate
deficiency represent a hypochromic, macrocytic, subpopulation of 48% of cells with an estimated
geometric mean red cell volume of 120.7 fl and geometric mean hemoglobin concentration of 32.4
g/dL and a hypochromic, normocytic, subpopulation containing 52% of cells with geometric means
for red cell volume and hemoglobin concentration of 94.0 fl and 26.0 g/dL respectively.

Figure 7 shows a scatter plot of the mean volume and the log-odds of the mixture weight
« for the largest mixture component resulting from the mixture distribution analysis applied to
distributions from each of the 236 individuals. Separation of the control, microcytic, and macrocytic
populations is reflected in terms of separation along the volume axis. The control population lies
roughly between 80 and 100 fl, the reference range for mean red cell volume. The microcytic
disorders (IDA, Thal, and ACD) are below 80 fl in general, and the macrocytic disorders (ALD
and BFD) are generally above 100 fl. Thus, the control, microcytic, and macrocytic groups appear
to be relatively well-separated and accurate classification of these three groups should be possible.
However, within the microcytic and macrocytic groups there is considerable overlap of the different
sub-groups (between IDA, Thal, and ACD; and between ALD and BFD) in the two-dimensional
volume /log-odds space. Similar overlap is also seen to exist in other two-dimensional scatter plots
(not shown). Thus, the existence of the ability to perform accurate within-group classification is
not apparent from two-dimensional scatter plots of the data.

The control group is further distinguished by having a mixing weight « that is typically closer
to 1 (high log-odds, the horizontal axis in Figure 1) than for the other groups. This lends support
to the hypothesis that the mixture model is fitting one component to the “normal” population
of cells and a second (typically smaller) component to the abnormal population of cells, for each
individual. For the control group the larger component tends to be given a much higher weight
(more normal cells) than for many of the individuals in the other groups.

Results of classification into controls and two patients subgroups are shown in Table 3, including
the number and percent of all patients correctly classified using leave-one-out cross validation.
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Distributions from two healthy individuals were misclassified as having anemia. These results are
not unexpected, because production of red blood cells is a dynamic process making it difficult to
classify distributions falling at the upper or lower limits of a particular subgroup.

For comparison, we also attempted classification of distributions into those of controls and six
patient subgroups (Table 4). Among the distributions from patients with microcytic disorders,
correct classifications were achieved for 77 of 82 (93.9%) patients with iron deficiency anemia
and 5 of 8 (62.5%) patients with thalassemia. None of the 16 distributions from patients with
the anemia of chronic disease were correctly classified, but were recognized as similar to those of
patients with thalassemia or the anemia of chronic disease. Among the distributions from patients
with macrocytic disorders, correct classifications were achieved for 23 of 28 (82.1%) patients with
alcoholic liver disease and 7 of 12 (58.3%) patients with Bja/folate deficiency. The small sample
sizes for some patient subgroups affected the disease classification rates. Including sex in the
model might be desirable from the standpoint of clinical interpretation, however we did not do this
because of the limited amount of data per class. Our results in general indicate that classification
into controls and 2 patient subgroups, for example, can be carried out quite reliably without taking
sex of the individual into account.

4 Discussion

We have successfully developed techniques to model and classify multivariate distributions from
grouped and truncated red blood cell data. Our study is unique in using mixture models in a
bilevel fashion, first for description on an individual subject level and then for classification on
a group level. On the individual subject level, the range of distributions in healthy individuals
with normocytic, normochromic cells is defined, while in patients with anemia, distributions con-
taining subpopulations of cells with microcytic, normocytic, or macrocytic red blood cell volume
and hypochromic or normochromic hemoglobin concentration are described. On the group level,
parameter estimates for individual mixture models are then used to distinguish between healthy
individuals and patients with anemia.

Discrimination between patient subgroups on the basis of the distribution parameters for
hemoglobin concentration and red blood cell showed that controls are well separated from other
patients with disorders of anemia (Table 3: 98% overall correct classification). In previous studies,
classification of patients with thalassemia trait and iron deficiency anemia (Jimenez et al.,1995) or
vitamin B12/folate deficiency, alcohol excess/liver disease and reticulocytosis (Harkins et al., 1994)
utilized printed statistical and graphical output from flow cytometric blood cell counting instru-
ments and additional clinical information. Our study is the first to model the joint distribution of
red cell volume and hemoglobin concentration reflecting measurements of individual blood cells.

Our results demonstrate that bivariate volume and hemoglobin concentration measurements
can be used to discriminate control, macrocytic, and microcytic groups to high accuracy. More
detailed discrimination at the level of specific anemias appears to be less accurate based on results
obtained in this particular study. Whether this is primarily due to inherent ambiguity of the class
origins of cytograms in volume and hemoglobin concentration space, or due to inaccuracies in the
classification model due to the small sample sizes available at the specific anemia level in this study,
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remains an open question.

As described in the Sections 2.4, the bivariate mixture models for each individual can be esti-
mated in a straightforward and computationally efficient manner, using the Expectation-Maximization
algorithm. The method can be readily implemented in software on a standard PC workstation, or
could equally well be embedded within a flow cytometric blood cell counting instrument. We con-
clude that for individual subjects, these methods may provide a means for monitoring the response
to therapy or for automated screening for disorders of anemia.
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