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Abstract

We describe an application of probabilistic modeling to the problem of rec-
ognizing radio galaxies with a bent-double morphology. The type of galaxies
in question contain distinctive signatures of geometric shape and flux den-
sity that can be used to be build a probabilistic model that is then used
to score potential galaxy configurations. The experimental results suggest
that even relatively simple probabilistic models can be useful in identifying
galaxies of interest in an automatic manner.



1 Introduction

In this paper we investigate the problem of identifying bent-double radio
galaxies in the FIRST (Faint Images of the Radio Sky at Twenty-cm) Survey
data set [1]. FIRST produces large numbers of radio images of the deep sky
using the Very Large Array at the National Radio Astronomy Observatory.
It is scheduled to cover more that 10,000 square degrees of the northern and
southern caps (skies). Of particular scientific interest to astronomers is the
identification and cataloging of sky objects with a “bent-double” morphol-
ogy, indicating clusters of galaxies. (For an example, see Figure 1.) Due
to the very large number of observed deep-sky radio sources (over 600000
clusters as of 2000), it is infeasible for the astronomers to label all of them
manually.

In this paper we propose a probabilistic approach for classification of bent-
double configurations. We describe our model for bent-doubles and discuss
possible usage of the model with both parametric and non-parametric meth-
ods. Since part of the problem is to properly orient the configuration, we
describe an iterative algorithm to find proper orientations for the given set
of configurations.

2 Data

The data from the FIRST Survey is available in two different formats.
In the "raw image” format, image cut-outs are available from the FIRST
website (http://sundog.stsci.edu/) with a resolution of 1.8 seconds squared
per pixel. The second data format is in the form of a catalog of features that
have been automatically derived from the raw images by an image analysis
program [7]. Each entry corresponds to a single detectable “blob” of bright
intensity (a sky object) relative to the sky background: these entries are
called components. The “blob” of intensities for each component is fitted
with an ellipse (details in [7]). The ellipses and intensities for each ellipse
are described by a set of estimated features such as sky position of the
centers, (RA (right ascension) and Dec (declination)), peak density flux
and integrated flux, root mean square (RMS) noise, lengths of the major
and minor axes, and the position angle of the major axis of the ellipse
counterclockwise from the north. The goal is to find sets of components
that are spatially close and that resemble a bent-double. In this paper
we focus on the classification of candidate sets of components that have



Figure 1: Examples of bent-double (left) and non-bent-double (right) con-
figurations. Notice that the conﬁguratlon on the top right does not have
enough “bend” while the configuration on the bottom right does not exhibit
symmetry . Cutouts are 47 x 47 pixels each.



Number of Catalog Entries Number Radio Sources

1 514637

2 66571

3 15059
4+ 6333

Table 1: Number of components per cluster

been detected by an existing spatial clustering algorithm [3] where each
set consists of three components from the catalog (three ellipses). As of
2000, the catalog contained over 15,000 three-component configurations and
over 600,000 configurations total (see Table 1 for more details). It is worth
mentioning that vast majority of bent-doubles consist of three components.
Three-component bent-double configurations typically consist of a center or
“core” component and two other side components called “lobes”.

The labeled set which we use to build and evaluate our models consists
of a total of 128 examples of bent-double galaxies and 22 examples of non-
bent-double configurations. A configuration is labeled as a bent-double if at
least two astronomers labeled it as such. Note that the visual identification
process is the bottleneck in the process since it requires significant time and
effort from the scientists, and is subjective and error-prone. This motivates
the creation of automated methods for identifying bent-doubles. This data
set is also considerably biased towards the bent-double class (i.e., bent-
doubles are far more prevalent in this training data set than they are in the
catalog in general). This is an artifact of the manner in which scientists
generated a labeled data set. However, since we use a likelihood-based
approach for ranking candidate objects, where a model is built only on
positive examples (bent-doubles), the training methodology presented below
is not sensitive to such an imbalance in the training data.

Previous work on automated classification of three-component candidate
sets has focused on the use of decision-tree classifiers using a variety of geo-
metric and image intensity features [2] [3] [4]. A limitation of the decision-
tree approach is its relative inflexibility in handling uncertainty about the
object being classified, e.g., the identification of which of the three com-
ponents should be treated as the core of a candidate object. A primary
motivation for the development of a probabilistic approach is to provide a



framework that can handle such uncertainties in a coherent manner. In par-
ticular, in this paper, we focus on a probabilistic mixture model that treats
the identification of the center component as a hidden variable, providing a
natural framework for handling this uncertainty both in the model-building
phase (on training data) and in the detection phase (on test data).

3 Probabilistic Modeling of Bent-Double Galaxies

We denote a three-component configuration by C = (c1, ¢, c3), where
the ¢;’s are the elliptical components as described in the previous section.
Each component c, is represented as a feature vector, where the specific
features will be defined later. Our approach focuses on building a proba-
bilistic model for bent-doubles: p(C) = p(ec1,co,c3), the likelihood of the
observed c; under a bent-double model where we implicitly condition on
“bent-double”. Our general approach is to define this likelihood, then esti-
mate its parameters from training data, and use it to rank candidate con-
figurations.

3.1 Modeling Orientation

By looking at examples of bent-double galaxies and by talking to the sci-
entists studying them, we have been able to establish a number of potentially
useful characteristics of the components, the primary one being geometric
symmetry. In bent-doubles, two of the components will look close to be-
ing mirror images of one another with respect to a line through the third
component. We will call mirror-image components lobe components, and
the other one the core component. It also appears that non-bent-doubles
either don’t exhibit such symmetry, or the angle formed at the core com-
ponent is too straight — the configuration is not “bent” enough. Once
the core component is identified, we can calculate symmetry-based features.
However, identifying the most plausible core component requires either an
additional algorithm or human expertise. In our approach we use a proba-
bilistic framework that averages over different possible orientations weighted
by their likelihood.

To formalize the estimation of the core and the lobes, consider the follow-
ing. Without loss of generality assign the numbers 1, 2,3 to the components.
In general we do not know which of 1, 2, or 3 is the core (under a bent-double
assumption). By an orientation we mean a mapping of vertices to a set



component 2
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Figure 2: Elliptical components of a hypothetical bent-double. Assuming
that label a would correspond to a core component, a good choice of orien-
tations would be {1 — 5,2 = a,3 = ¢} or {1 = ¢,2 — a,3 — b}.

of labels {a, b, c} which preserves the neighbor relation in a cyclical order.
Figure 2 shows an example of elliptical representation with possible orien-
tations. For the set of three vertices, all 6 mappings preserve the neighbor
relation. (In general, for configurations of n components, there will be 2n
such mappings.) The mapping from components 1,2,3 to a,b,c is defined
by orientation #;. We can then write

6

p(Ca,Cb,CC) = Zp(caacb,cc|0i)p(0i)7 (1)
=1

i.e., a mixture over all possible orientations. Each orientation is assumed
a priori to be equally likely, i.e., p(6;) = %. Intuitively for a configuration
that clearly looks like a bent-double, the terms in the mixture correspond-
ing to the correct core component would dominate, while the other core

interpretations would have much lower likelihood.

We represent each component ¢, by three features. Note that the features
can only be calculated conditioned on a particular mapping since they rely
on properties of the (assumed) core and lobe components. Thus, conditioned
on a particular mapping or orientation #, assuming label z € {a, b, c} where
a,b,c are defined in a cyclical order, the features are defined as:



e Angle o, g—the angle formed at the center of the component (a vertex
of the configuration) mapped to label z;

e Side ratios sry g = ;

|center of z to center of next(z)|
()|

|center of z to center of prev(z

_ peak flux of next(z)
~ peak flux of prev(s)’

e Intensity ratios iry g

and so ¢g|0 = (a9, 57,9, 74,0). Other features are also possible. Nonethe-
less this particular set appears to capture the more obvious visual properties
of bent-doubles.

Rather than modeling the full joint distribution of all features, we make
some approximating conditional independence assumptions (motivated by
the relatively small amount of training data). In particular, we assume that

P ((Ca; Cp, CC) |0)
= P(agp, apg,acp) P(sTag,ST0,57c0)
x P (’i’l"a,g, ’L'Tb,a, ’L"l“c,g) .

For all ratio features r (either of sr,ir), rq9-rp9 - 7c9 = 1. For the angle
features, oy g+ g+ g = m. Assume that label a corresponds to the choice
of the core component. If we further assume conditional independence for
the features of any two components we can obtain further simplifications:

P (a9, .0, tc,p)
= P(agp) P(awplaag) P(acs|oa, ane)
= P(age) P(awy);

P (r4,0,75,0,7c,)
= P (ra,) P(rs,0l7a,6) P (Tc0l7a,0,75,)
= P(rqp) P (o) -

3.2 Estimation of Probabilities

Given 0, let P, (a) = P (aqyp), Pa (1) = P (rey), and let Py (a) = P (ap),
Py (r) = P(rpp). If we know for every training example which component
is the core (and is mapped to label a) we can then unambiguously estimate
each of these distributions by using either parametric or non-parametric
methods. We used two methods, fitting Gaussian probability distributions
and using kernel density estimators (KDE), to calculate P, and P,.



For the KDE method, we can estimate P (z) (either P, or P,) given a set

v1, ...,V Of appropriate values of features over the training set as
1 k
P (z|v1,...,v¢) = EZK(%Uz‘,w)
i=1

where K is the kernel function and w is the width of the kernel. The choice
of kernel for this problem is complicated since all of the used features have
bounded domains — each « lies in (0, 7), and each ratio lies in (0, +00). The
domain for the ratios suggests using a log-normal kernel while the domain
for angles suggests using a transformation-based kernel where the original
domain is first mapped to (—oo, +00) [6]. More specifically, for ratio features

1 _ ((log(vi)+w2)710g(cc))2

K (z,v;,w) = %6 2w? )

and for angles
1 () -r@)?
Ky (z,v5,w) = 66 2w?2
where H (z) = %log —2— with 8 > 0 and C being a normalization constant
computed by numerical integration. We experimented with other functional
forms for the kernels and found that the above kernels produced better
accuracy in our experiments.

For the parametric method, we fitted univariate normal (Gaussian) dis-
tributions to the transformed features. Since the domain for the Gaussian
univariate distribution is (—oo, c0), we first transformed the values of the
features into (—o0,00). For ratio features, we used the log transformation
while for angle features we used the transformation H as described above.
For each univariate Gaussian, both mean p and variance o can be estimated
from the transformed features derived from the training set.

3.3 Determining Core Components

In the previous subsection we described how to estimate the probabilities
of individual features given a proper orientation or the core component (or
equivalently, knowing the true identity of the core component). In practice,
however, the identity of the core component is unknown.



We use our model to estimate which components are likely to be cores,
using the following iterative scheme. Initially, core components for the bent-
double examples in the training set are chosen at random. At each step of
the iteration, we build the corresponding P, and P, distributions from the
training set using the currently estimated orientations (and labels a). The
estimated P, and P, distributions are then used on all of the examples in
the training set to calculate the probability of each component being a core.
This is done by summing P (¢4, Cp,cc|0;) in Equation 1 over the 2 (out
of 6 possible) orientations #; that map that component to label a. The
most likely core components for each example are chosen to be the cores for
the next iteration (in effect this is an approximation to a full expectation-
maximization procedure, where the most likely core component is chosen
rather than averaging over core components). The likelihood (probability
of the training set under the currently estimated distributions) is recorded
at each iteration. The algorithm stops either after a prespecified maximum
number of iterations or when there are no changes from one iteration to the
next.

This procedure yields estimates of the P, and P, distributions for each
feature, allowing calculation of P (c,, 3, cc| 6;) for any particular orientation
0;. Thus, for a new unlabeled example we can now calculate a full likelihood
P (cq,cp,¢c) (Equation 1), i.e. we average over all 6 possible orientations.
For a set of unlabeled examples this yields a set of likelihood scores under
the bent-double model, which can be sorted and thresholded to yield a
receiver-operating characteristic. If the likelihood of the data under a non-
bent-double model is assumed to be roughly uniform in feature-space, then
these likelihoods will be roughly monotonically proportional to the posterior
probability of a bent-double given the observed data. Here we choose not
to build an explicit model of non-bent-doubles given that they can exhibit
considerable variation, and instead rely on a model only of the positive
examples for detection.

4 Experimental Results

For our experiments we use leave-one-out cross-validation, where for each
of the 150 examples we build a model using the positive examples from the
set of 149 “other” examples, and then score the original example with this
model. The examples are then sorted in decreasing order by their likelihood
score and analyzed using receiver operating characteristics (ROC curves). If



the two classes can be perfectly separated by these scores, i.e. scores of all
negative examples would appear after scores of all positive examples, then
the curve would coincide with the left and upper sides of the [0, 1] x [0, 1]
square. We use Aroc, the area above the curve, as a measure of goodness
of the model. A random score assignment would yield Agrpoc = 0.5 while
perfect assignment would have Arpoc = 0.

We experimented with both parametric and non-parametric estimators
of the distributions P, and P,. In a non-parametric setup, we used kernel
density estimators (KDE) with a number of different choices of bandwidth.
The results appear relatively insensitive to the particular bandwidths chosen.
One set of bandwidths resulted in the plot shown in Figure 3. Alternatively,
we tried estimating P, and P, with normal distributions on transformed
features with one set of transformations resulting in the plot shown in Figure
3. From the plot we can infer, among other things, that the highest score
for a negative example first appears after scores of 95 out of 128 positive
examples (74%) for the KDE-based method and 103 out of 128 (80%) for
the parametric method. Thus, the model appears to be quite accurate at
detecting bent-double galaxies.

5 Conclusions

We proposed a probabilistic model for the identification of bent-double
galaxies. A general mixture model framework allows for a principled and
effective approach to orientation estimation. Experimental results based on
cross-validation of likelihood scores under the model are accurate enough
to suggest that the technique may be quite useful for automated identifi-
cation of likely bent-double candidates from very large astronomy catalogs.
In the future, we plan to choose an operating point and to compare this
method with decision trees. We are also investigating whether bent-double
configurations can be identified using unsupervised learning techniques [5].

6 Acknowledgements

This work was performed under a sub-contract from the ASCI Scientific
Data Management Project of the Lawrence Livermore National Laboratory.
The work of S. Kirshner and P. Smyth was supported by research grants
from NSF (award IRI-9703120), Lawrence Livermore National Laboratories,
the Jet Propulsion Laboratory, IBM Research, and Microsoft Research. I.



0.9 i

0.8 b

o o
2] ~
T T
| |

True positive rate
o
(6]
Il

0.4} R
0.3f i
0.2} R
01f = Parametric 7
- Kernel-based
o Il Il Il Il Il Il

0 01 02 03 04 05 06 07 08 09 1
False positive rate

Figure 3: ROC curve plot for a model using angle, ratio of sides, and ratio

of intensities, as features. For the parametric method, Agoc = 0.0469. For
the KDE-based method, Aroc = 0.0696.
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